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0. Introduction. Contents of this report.

We congratulate the University of California on its centenary

and are pleased to contribute this report in its honor. Our title:

iL actually a slight misnomer, since the work we shall describe

begins with the 1 9L18 paper of Shannon [i.L44

Information theory covers a multitude of subjects (the cynic

might say sins) and we would like here briefly to indicate what

this report will and will not cover. It will concern itself en-

tirely with what is often called probab.listic coding theory.

Algebraic coding theory, w.hich could properly be considered a

branch of information theory, •.:ill not be included because it is

largely outs:i.de the competence of the authors. Although algebraic

coding theory and probabilistic cod .nd theory are parallel and

complementary in one sense, their spirits and methods are very

different. There are other mathematical disciplines which are

often incorrectly lumped under information theory, principally

because they use entropy functlon as a tool. It would be as

irtcorrect to classify them under information theory as it would be

to call any theory integration theory simply becaua.e it involves

the u3e of the integral as a tool. Thus we shall. not discuss the

problems In ergodic theory which have been solved by using entropy

as an invariant, nor problems of packing in function spaces, nor

the entropy of stochastic processes, not the' various systems of
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tixiomatizing entropy.

Appended to this paper is a bibliography which Its reasonably

*complete., thourgh not exhaust'ive. I. is obviousl~y impossiblen for

us to discuun every one of' these paipers,, particularly as the

editors of this voluie., of' necessity, have subjected us to precise

* space limitations. The choice open to us was therefore either

to write an introductory exposition of" informati on theory or it

very technical paper4 for specialists. The fixrst'of these choices

seelned to us not to be in keeping wi1th the spirit of this volumies

and the. second would. result in a paper which rnould bc r'ead only

by a smal~l group who i-ight have little need for reading it. We

have therefore diecide~d to comt~roailso betwercen lthe two choices'.

We shall discuss a nuiibce v~:!` bas-ic., typical., and im,.-portant subjects,

which will enable thllc non--;.4pcia!J.st reader to gget soname of the

flitvor aiid some undterst-and.1ing of' the t'heory., without at- the Eaiae

-time. completely borltng the specialist reader. We can only hope

that t~his compromvise w..ill not cause us to fail on both counts.

In order to avoid invidious comparisons and for other reasons,

we have decided to omiýt* actual cittation of' ref~erences in the text.

*There are only two exceptions to this., One,, a very mi~nor one,, is

where vie cite two papercs aith se-simi ngly- contradictory, results,

because we wish to war,-n the reade-r tt.they de-al wit-h different,

* versions of a problera discussed below. The other., t!7. major

exception, Its to refe:.? freely to the nne and papers of' C.E. Shannon,

whose truly bri.le1.1.,nt wroxk fouinded the theory and proet'aiced many of

its -Important iresu2.ts.
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'I. Discrete mn• o,.less chanmels.

Let. A, end , i,...,bl be, respective'.y, the

input and output alph-bets. The _i.hbch" that 'we use in evcryday

life consists of 26 Latin letters, 10 nui.nerical symr.bols, various

punctuation marks, and a space between words, which is itself a

puncti.ation rmintrk. The alphabets Ae* nd B* are essentially, no

different and no less General. To avoid' the triviail, we assume

that both a and b are groater than 1.
Any sequence .nf n letters, or _e.e trom A* (respectively,

from B*) is called a transinit.ed or sent -H-sequence (respectively, a

reeeiv~e n-sqcienoce). In any one discussion, n will be f.xed. The

sender transmits n-sequences over a chan-nl. When he sends such a

sequence, say U., the receiver receives a chance received n-sequence;

that i1, the sequience received depends upon chance. Call the chance

received n-sequence v(uo). Its distribution depends on ua and the

channel. In fact, for mathematical purposes the channel i.s si.Lply

the funetion

(r~l P[V(uo) =*Vol,

that is, the probability that, wle- the n-sequence uo is sent, the

chance received sequence should be vo; this function is defined for

any transmitted n-sequence uo and any received n-sequence vo. tWhen

necessary to avoid conf-'asion, dependence on n should be indicated.

Usually the function (1.i) is defined for every n.

One of the simsplest and r.aost important of all channels is the

diseete memnxryless channel. (dmc).. it is described by means of a

cnan:e! Probobility function (cpf) w(jli, defined for every i C A

ani every ' c B*. This can be any function for which always

w~(.j'i) 0 rnd3-
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Dif'•'e fnr. fnrt.iorns w define cdiffe'..ent drrv ,s. Let

U. 0 (a ..,a 2,. .ar,1 ,

vo 0 (.bli,'o,..,pbn .

Thnen

n
P~v(u.) =o o r w(b. ja.

k=1 k

We see that w(jli' can be'regorded as the probabiliU;y that,

when the letter I is sent, the letter j is received. In that case,

the individual letters received are independently distributed.

We now define the notion of codes which is = bas:Lc in

information theory. A code_ (n,',?), where n is the lene~lh of each
•or~d, N is the length of the code, and ' is the inaxirn!um Drobabijlty

o f error, is a system

(1. 2) (u1, Al),*....(u NAN• I,

where ul,...,uN are transw**.,.ted n-sequences, Al,...,A, are disjoint

sets of received n-sequences, and

(1.3) Pfv(ul E Ail >_ i-X, i =l,...

A code is used as follows: When thie sender wishes to send

the ith nmessage, he sends -ii. When the message received lies in A3,

the receiver conclIudes tbat the jth message was sent. If the

m;.- ,•sco received does not lie in any AP, he may draw any conclusion

he w-i*Oshes about the message that has been sent. The probability
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that any message sent will be correctly understood by the receiver

is at least I -R

One general problem is this: For various channels of interest,

given n and N, 0 < X < 3, how big cen N be? Most of the beow,
results are asymptotic in n.

The closely related problem of constructing the codes whcs

existence is guaranteed by the theorems that will be cited below

is as yc-t only partially solved.

Any vector with nonnegative components that add to I may be

called a p robabili_. distr'ibution. A probability distribution on A*

(respectively on B*) will h~nve a (respectively b) components.

The entropy of a probabillty distribution -r,

I = (*W ,...,T ,

is defined to be

C
(1.4)= -( E i log2 ii=2.ri vi

Logarithms to the base 2 are used for historical reasons only, and

* any other base would do as well. If 1i= 0, the ith term of the

right-hand member of (1.4) is defined to be 0. This last convention

"* always applies. The entropy function has many important combina-

toriai prcperties which are essential in the statement and proofs

of most; coding theorems.

Let N(n,N) be the length of the longest code (i.e., of

maximuwm length) of word length n and maximum probability of error

W. Obviously N(n,X) is a monotonically non-decreasing function



o ?. Yet the fo'..loniring. remarkable bheorem holds:

(.lm ! log2 N(,, ) Cc,

where C is a constant, independent oi" *A, given by

(1.6) max FH.r') - . Ti -I(w(.ji))],v ~i '

where

(1.7) ir' W 7r,

W is the matrix with w(Ji.) the element in the jth row and ith

column, and 7r. and r' are probability distributicns (co],rmn

vectors) on A" and B*', respectively. The number C is called the

cap.nity of the channel. One can say even more! There exists

.a positive function KI() of N such that, for any n, there exists

a code such that

(1.8) N > exP2 [nC -Fn K(N)]

and there does not- e-xtist a code such that

(1.9) N> exP2 [nC + ,Fn K(7) .

(1.8) is celled a coding theorem and (1.9) is called its

strong eonversee. The weaker result, that.always

(1.10) N(nN) < exp (nC J.-

is called a weak converse



A abonnie. other thian' the c-mhv: has a different funti.on (.)

(no~t. iven by tl*,e nrodnact of the values of w( - )) nd may have

differen~t alphabets~. Whenever,, for -such a chan-nel, (1.5) is

sabisfiedcl, h r1, we shaf.cll C h c'poe.ty of the channel. Contrary

to pcpular belief, not all. nhannels have a capacity. Iflost

"reasonable" channels. o-f intere~st do.

There a.re different ýanlt very Interestinig methods of pro-of of

* (1.8) and 0..9), but lack of spiae prevents our do~ing mor'e than

barely mentioning them.. One metbod of' proving (1.8) is based on

the fae-t that if a code is ch.os'en at random (!~). by a :-reasonabie

* and easily specified random process, the average error (of

decoding) is very small.. (This proves the existence of at least

one code, .and in a sense implies that "most" codes have A nmall

* probability of error.1 In. a secoind method of prov.ng k(1.8) the

code is built up seria tim and arbitrj.aril.y until it's prolongation

is impossible; the code is then shown t0*have tho desireal length.

(Tis again. su-ggests that "tmost"' codes are "1good".) A third

method involves a method of actually co~unting sequaences. This

last roethed can also be used to prove the strong converse. Another

* method of proving the strong converse essentially. replaces,

counting sequences by measurcing their volume. Finally thle weak

converse is Droved by a simple and ingenious ma~nipulation of

entrc-pies. Modifications and combinations of these rnethc'ds are

usually adapted to other channels. The proofs show Up the

com~binato~rial signifir.ance of the various entropies which ooccur

v.n '-he stateflients and proof's of the theorems.



.6

Consider now the dine .. lth the following difference:

Suppose the sender can look over the receiver's shoulder and see

what the latter is receiving. The sender can choose subsequent

letters to be sent in order to correct previous reception, but he

can communicate with the receiver only over the channel. The

capacity of this channel is the same as if there were no feedbacki

This channel could occur if an earthy expedftion landed on the

moon. Naturally the poier of the latter's transmission apparatus

could not be great. The receiving station on earth, however,

would have almost limitless power and could report with essentially

perfect feedback the miessage actually received.

The texTa discrete :s of enginerin.. origin and r.'eally meens

finite. Channels which are not discrete have infinite input

or output alph"•abets or both. The infinite alphabets may be

countable or not. The usual method of treating such channels is

to approx-7ma:te their -alphabets by finite alphabets. This is not

always poss..blS and often difficulties are encountered. When the

alpha.bets are not denumerable measure-theoretic questions also arise.

Some references for this section:

[96] [98 , [99] , [l1J $ [1.907] , [112) )[1.24, [$ .128]

[J29], [132, ],)41] p [L,.43J, , [ , r16ol, r16.d, 9623]

[170] [.173] , [1m74 , [175.1 [,843
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2. compound channels.

Consider now a dmc with this difference: Instead of a single

cpf w there is given a set S* of cpf's, say w(. is.), se E

Here the third index, s, distinguishes the cpf. The set S* may have

infinitely many elements. For each s, w(jli)s) is a cpf defined

for i = 1,...,a and 3 = ±,...,b. The compound channel transmits

as follows: Each word of n letters (n-seqyzence) is transmitted

according to some cpf in e; the cpf may vary _arbi__trarily in so from

one such word to another.

Let P now denote probability according to the cpf w(. 1 1 s).

A code aN,?A) for the compound channe). is a systemi (1.2) with

all the requirements, except that (1.3) is replaced by the stronger

requirement

(2.J.) Ps Jv(ui) E AiJ. -A , i 3,...,N; s 6 S.

Thus, even if Maxwell's demon tried maliciously to vary the cpf

so as to make things as difficult as possible, the probability that
s<

any word qent would be. incorrectly understood by the receive:, is-• A.
..The question is, how:,long can codes be and still meet this

stronger requirement (2.1.)? It- must be borne in mind that the cpf's

0in S may be very "antithetical" to each other. The fact is that

theorems exactly ).ike those for the dme hold for the ccmpo•,.d channel.

Thus the raximuiw length of the code depends on a constant called (as

in the case of dnic) the capacity (CI sayl of the compound channel.

If C I were 0 in most cases, little could be done with a com-

pound channel. Let C(s) be the capacity of the dinc with the
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single cpf f( -Is). Define

a
C2  inf C(S) inf max (H('l'Is) - r. -iH(w(.iijs)]•.

ses seS r i~l.

Then obviously we have C1 K C2, for the demon could use the "worst"

opf for every word, tha't is, the one with the smallest capacity.

(If S is an infinite set and there is no worst cpf, one uses a

cpf with a capacity arbitrarily close to the infimum.) The fact

is that

a
C =.max mt [H(7r'Is) - . TiH[w(h iis)J1,

r seS

and, surprisingly and pleasantly, C1 is not 0 unless C2 is 0.

Thus C1 is not 0 unless S* contains a cpk' whose capaciOy is 0 (or

a sequence whose capacities approach 0).

Consider now a compound channel as above except that the

receiver now knows which cpf is being used (but the sender does not).

It has been shown that the capacity of this channel is also C1.

Thus knowledge of the cpf by the receiver alone does not increase

the capacity!

Consider the compound channel as above, except that the cpf is

- now knoin to the sender but not to the receiver. The capacity is

then C20 which in general is greater than Cl.

In all of the above results S* may contain infinitely many

elements, indeed, non-denumerably infinitely many elements, and

the cpf is chosen arbitrarily at the beginning of transmission of

each word by the "Jammer". Nevertheless, the fact that the same
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• cpf (although arbitrarily chosen) ic used for every letter of the

w~ord has essentially the effect that, to a satis.f'actory approximation.,

the set S can be replaced by a finite set or at least one with

2 cpf's, where'•A is suitably chosen. This is always an essen-

tial step of the proof. Suppose now that the cpf varier Arbitrarily

fromi letter to letter of a word. The above reduction is now no ldng-

er possible, previously used methods no longer apply, and the problera

becomes very difficult. Partial results have been proved in [841

and a complete solution announced without proof in [3.] • Since a

theorem announced in [34] is incompatible with a regult proved in

[811 it is clear that the channels trsated are not the same. While

awaiting p ublication of the reseults announced in [3)q and 5_one

can repeat, withouti fear of contradiction, that the pi'oblels in-

vovled in these "arbitrarily varying channels" are very difficult.

Suppose that the cpf varies arbitrarily fro.nJletter to letter,

but with some limitations. For example, suppose that the number of

changes from one cpf to another is not greater than a fixed multiple

of nc, o4 < 1. In the latter case it is easy to prove that the

problem can be reduced (and hence solved) to the (compo~nd) case

m:here the same cpf Governs the transmission of each letter.

We spoke of the above prob.lems as If.' neither the sender nor

the receiver knew the cp:f. Of course the problem of arbitrarily

varying channels has been studied where either or both know the cpf

for each letter. In fact, the capacity of the channel where both

know the arbitrarily varyi.ng cpf is the vrtallest of the cpf's in

the set S .

*Ratndomized codes are used in [311.) but are not admitted in .



Perhaps this is the time briefly to mention the question of

randomization. Conceivably the sender could use randomized

encoding, i.e., each sender's message could be represented by a

probability distribution over sequences in the input alphabet.

After the sehder has decided on the message he performs a chance

experiment wi.th the corresponding probability distribution and

actually sends the resulting sequence. Randomized decoding is

defirn d similarly in an obvious way. Randomized codes have been

studied to some extent, and further studies are in process.

Generally speaking, randomized decoding seems to provide little

advantage, but under certain conditions randomized encoding

actually helps by either making a longer code possible or by

reducing the error. Indeed, the author of (341 states that his

general results are valid only under randomized encoding. These

results are for arbitrary varying channels, and an explanation of

the need for randomized encoding may perhaps be the following.

Suppose that there is a rational malevolent being, the "Jammer"'

say, who chooses the arbitrarily varying cpf's so as to make

communication between sender and receiver as difficult as possible.

The utility of randomized encoding seems to be to protect the

sender against the jammer. Even wpen the Jammer knows the message

to be sent, if he doesn't know the actual sequence which will

represent it he may not be able to choose the sequence of cpf's

which will most efficiently jam it. No such utility accrues to

randomized decoding, and the sender can do best by voting for the

message with the highest probability. (This is not strictly

correct in the present model. The messages to be sent are chosen
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arbitrarily and one cannot speah of the a posteriori probability

of c message after the resultirin chance sequence has been received.

However, intuitively this is near enough, and it will be made pre-

cise in the next paragraph 1ýut one.) ThiS discussion also points

up the difference between two channels, each with arbitrarily vary-

Ing cpf' s (from letter to letter). In one channel the jarmiier knows

the actual sequonce being sient before it is sent, in t.he other he

knows only the probability distribution ove.. input" seuences

Naturally the capacity of the second clhannel is not less than the

capacity of the first channel. The infoination theory literature

is sometimes not entirely ratheliatically precie.. and such dis-

tinctions are often made only t•niplicItD.y. It is llkely that [341

treats the second channel; C84J3 ce.tai%., txreat"s the first.

The preca41ngL remarks sucgest that sortie pr'obler:',s in infoxrmation

.theory should be viezed as zero-ssum two-person games between the

sender (and receiver) and the janmez.'. Indeed,, the forz of the

capacities in the several forms of the compounC (stationary)

channel, i.e. max inf and Innf max of the "inforlmation fuLction" in
the above definitions of C and C2, sr,zest a gane-th, retic back-

ground to the problem. A number of writers have made more or less

positive assertions about this, but no specific proof of any coding

theorem, or any other important fact by gne..t.coa't.c r. ethods is

avai-lable in the literaturc, If there is an essential. non.-trivIal.,

and meaninsful connection betv!en the t.:o theories it ".ould be very

interestingZ and usefu.l to et:':-ah it precisely; it m,.ht ' -,e0ll

lead to further results in codinS theory. In" sevea.?al papers cor-

related encoding and decoding has bean used. r the sender, before

transmitting any



P2.6

message, chooses a code at random, communicates the result of his

random experiment to the receiver, and then sends the message

according to the code selected. This procedure is repeated at

each massage. It seems to the writers that this procedure cannot

seriously be considered as reflecting anything remotely resembling

actual communication. Surely it is vastly more complicated for the

sender to transmit to the receiver the designation of the code

which is the outcome of the chance experiment than it is to transmit the

message itself. Yet a new code must be transmitted with each
hoiveVr'o

message! No doubt ,problems involving correlated encoding and decoding

have mathematical interest.

In most papers in information theory, especially those written

by engineers, it is assumed that the message to be sent is itself

chosen at random (usually with 'eqpal probability for each message).

When this is so one can speak of the a posteriori probability of

a message, after it has been passed through the channel and the

chance sequence received. Naturally the aver&ge er-ror is then

minimized if the decoder decides that the message sent is the one

with the largest a posteriori probability; this is called maximum

likelihood decoding. Maximum likelihood decoding is simple and

unambiguous only if there is only o~ie cpf for the channel. If

there is more than one cpf then different messages can have

maximum a posteriori probability according to different cpf's and.

often a difficult theory is needed for a decision. Returning to

the first and basic case studied, that of a dmi with a single cpf,

the fact is that the two cazes, that of averagei error with the
mamnessoge chosen by a(known or u/nknoim• random mechanism, and thato



2.7

of maximum error with messar•es chosen .irb.trarily, are essentially
the same. This is also true of many other channels. This fact

contradicts the statement, made by some very great mathematicians

and widely believed in engineering circlesý that no theor•f is

possible without knowing the sta+istics of the (randomly chosen)

message. For example, the theory devel6ped in Chapters 3 and 4

of [5] neither assunmes the existence of a randomi mnechanism for

choosing messages nor- mkes any use of it.

A fri.mber of wr:iters have stated, mostly without proof, that

there i.s a basic and meaningful connection between information

theory and the theory of statisti.cal inference, and some of tberti

have attempted formally to set up a theory which v.iould exhibit this

putative connection. it see.Is to us thý-.t to establi.sh a bssic

and meaningful connection beteen ti:o theo'Vies requires either

that one obtain a conimon frawe-ework frora which one can derive

some of the basic theorems in both theorivis, or that one derive

important old or new theorems in one theory by use of theorems

or methods of the other. By this essential standard no.meaningful

* connection between info.mation theory and the theory of statistical

inference has yet been established. Of course this does not prove

that no such connection exists.

Some references for this section:

[3] (,iV, (l-j, [163, [&l , [.8] , [109] , f•.o1, U3, [[,28

298] , [.18.3 [135 , [37ý! , [471 [,o9'. , 773 , [-6
8 .o] [W- [821 ,[ r.p 10)

178.•] [.1.803 , [.1.2,) [18 [•. , [104 j , f.L95, [-9 , 3 -., ,



3. Error bounds. SegL.ential decodln__, ,

-Suppose givern a dimc wtitth capac..ty C. Let 0 < R < C and con-

sider .all codes of, word length n and code length 2R for this

channel. (In such a cast, one is said to be transmittting ar "rate"

R.) It is not difficult to show that there exists two positive

numibers, say D, and D., such that, among these codes, there exist

one for w'hich A , the maxi.m1u1m error of decoding any wo.rd, satisfies

S< D. exp ( -nD2 3 ; this is su.tmnarized by saying that the error

decays exponentially (with n). It is true for most channels, not

only the dmc, and probably all channels of prsctical amportance,

that th. error decays exponentially with n. The proof of this is

usually quite simple and requires only an alm.ost txrvial modif'i-

cation of tlhe proof of the coding theorem. An intuitive explanation

is perihaps this: The codes we are cons1.derIng are of such small

length (app-oximate)y 2 "n(C-R) of the length they could have for

a fixed that there are great gaps a',nong thie different uis,

and they can be distinguished (decoded) by the decoder with very

great accuracy. Exponential decay of error? is essentially due to

the fact that the probability that the mean n of ndependent,
I

identically distributed chance variables X1 , X2j ... *X shall

exceed any flUxed number larger than than their co•,on expected

value, decreases exponentially t.ith n.

Th•• school of electrical engineers workin; in info'rmation

theory, whose intellectual center is the M'assachusetts Institute

of Technology, regards the detexi.inatIon o[ thý.! best (i• e., largest

possible) D as one of the prLncipa. and most importan -roblF"s
of informxatLoi, theory. Dcte.minmation-s of bounds on D. is



considered of neg).:.Gible importance. The reason given for the

importance of the problem is that the complexity of the apparatus

for coding and decoding goes up, roughly spc•kinrig, exponentially

with n, so that it is important to know the smallest n for which

one can achieve a desired rate R and a desired (usually small)

upper bound on the error. Even for the dric the problem is of form-

idable difficulty. Previous attempts consisted of using rahdomfzed

coding theorcm to get a lower bound on D2 and sphere packing miethods*

to get an upper bound. It was thought that these two bounds agreed

over a certain range of R, so that D was determined for this
2

range, but errors were found in the arguments. A recent new effort

has succeeder in cietermining D2 for part of the range of R. The

argument is Oiffiicnlt and does not se.mt to lend itself to intuitive

descr:•.ptior or sur'..m,.ry. At least that part of it which gives a lower

hound on D2 can be carried over yith little chanVe to many other

channels. The value of D2 for all 1 is as yet unknown, although

approximations are available.

We now turn to another subject of major investigatiton among

engineers, sequ.-ntial decoding. This is one of the most beautiful

of all ideas in e'.•=S "irory and one of the most important for

practical application. Unfortunately for the mather.matician, it

does not seem to lend Itself to elegont rslathematical theoreis.'o

Even an approxiiimatc descr.iption of the method would require essen-

tially the reprodtuction of at least a short pap-.r on the

subject orI the reproduction of the ,pproprite

for a description of thnc' .fei; ods see, eog". p. 2L7



chapter of a book. This is impossible for us, but perhaps

the followinS lines will help to form some idea.

The actual application of the codes hitherto discussed

Wiould always occur in connection with a computer. The code

would be stored in the computer and the latter would be

indispensable in both encoding and decoding; the latter process

requires many more computations than the first. The volume of

naterial to be stored and the number of operations to be

performed increase exponentially with n. and soon exceed the

capacity of even very larg6 modern computers. This raises the

problem of finding methods which can be carried out practically.

Sequential decoding is intended to be such a method.

We pause for a moment for an intuitive discussion of what

Makes efficient coding. If the transmission of any one letter

is repeated a sufficient number of times then, except in certain

.obvlous special cases, the decoder (receiver) can identify the

letter being sent with a probability as close to one as desired.

In this way any desired message could be transmitted with any

decired degree of accuracy.' The trouble with this naive method

I. that it is grossly inefficient; in terms of our previous

Vnrizeters, for given X and R an enormous n is generally required.

"'At makes for efficient decoding are the differences between

Crntlre wsords rather than between individual letters; the letters

o 3 word reinforce each other, so to speak, so that even if

'V-wral letters are misunderstood the entire pattern "Itill

:c::,-.ns clear'. *Thic is called 'ýedundancy"' as distinct from :iraple

"•.tition.. For a homely example, consider the probleri of reading
N
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every letter of a manuscript written in poor handwriting. If

the reader is familiar with the subject or even the ianguage

he can often reconstruct, illegible letters or words from the

context. This is impossible if what is written is made up of

nonsense syllables or material in a completely unknown, language.

(Although in the latter case one can start looking for patterns

(i.e., redundant elements) as crypto-analysts do.) The idea of

sequential decoding is to introduce redundancy into the decoding

of individual letters, while avoiding the construction* of codes

which require the storage of, and calculation with, exponentially

many sequences. We should emphasize, however, that there is

not just one method of sequential decoding, but a number of

variations. We shall describe a typical, but by no means unique,

method.

In the basic and simplest description of sequential decoding

it is assumed that the channel is binary symmetric and that one

has the problem of reproducing a stream (doubly-infinite sequence)

of chance "information" digits which take the values 0 and I with

equal probability, all ihdependently of each other. (A binary

symmetric channel reproduces. each of the two digits correctly

with probability l-p, say, and reverses the digits with probability

p.) Suppose that the 4igits actually realized are ... , m limo,

1,... . Let m and k be integers, and suppose that the rate

R = •, and that mk is the "constraint length". Each information

digit will be coded into m digits which are then transmitted over

the chamnel. Each of these m digits is a linear combination of
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the information digit being sent, say too, and its (k-1)

immediate predecessors, mrl,...m(.(k.1). Hence the "effect"

of any information digit extends over mk digits, transmitted

and received, and one does not decode this information digit

titl ink digits have been received; this delay is a price paid

for using the method. The decoder is now suppored to know the

preceding (k-i) information digits. (He has decoded them

correctly with very high probability.) He begins a Search

which will end in decoding the current information digit. This

search is impossible to describe under our present limitations.

It is based on the fact that, with very high probability

(depending upon mk) the "distance" (this depends on the particular

sequential decoding procedure) between the received sequence of

mk digits and a transmitted sequence of ,k digits which corresponds

to an information sequence ro' ml'''Imkl, where o is the digit

different from mi0, is largo. By good sequential decoding

procedures one can relatively quickly eliminate as possiblities
a'

all sequences which start with in, .withA small probability of

error. Here "relatively quickly" refers to the average number

of required searches and computations as compared to the

probability of error. The above description is very ve*y crude

and incomplete, as any description of this brevity must be, and

at best can only give an inkllng of the flavor of this beautiful

idea.

The published results in the literature of sequential

decoding consist of descriptions of different schemes, and the
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theoret!s are StateMonts about the expected nfLbibcr of computc. ions

needed by the scheme undler e(ertvin conditions and the probability

of err-or in decoding. These results are often clever and ingenious

and considerable difficulties have to be surmounted in obtaining

them, Unfortunately for the the theore;,s are al-

most never elegant. as are the theoreg,.s in the Shannon theory.

There are no clear cut prooft that a cetai.n procedure 5.s optJisalo

Pey'haps these Will still come.

We close this section t,,;ith a brief description of a totally

different and also very clever idea * Consider a channel wwith

feedback where inelependenti,, identically distributed Gaussian e'crror-s

are added to each transittted signal, and I times the stumi of' then

squares of the n &ignals which rcpresrnt a wor('d is bovnC-ed above

by a given constant (the '•averagc po,;er"), Acco',rdoing to this

idea the *,ge is coded in en a:,'bltra-.y but fixcd ranner into

one of a sot of equally spaced points of an int erval, Crnd this

point (nttuber) is t.:nitted; this is the first of the secjuenzc.e

of n signals th:hIch 1,:.11 be. used to t.*an'z•msit the rmeasag;e. The
th2 al loe inzvi transwit-tted s.gn..,n, i = 2,., ,n is a stitably chosen linear

function of the message end all. prev:.ou•.ly received signals, The

decoding of the. message after' t'e nf'h "received signal. is also

very siiJpl.e: one decodes,ý the r .,zrage sent as the one correspondiHng

to tbat one of the equn.lly spacead points which .5i. nea.er-est to the

nth received si.;na.1 . . i..:.s been ProVred that thir tho, is

opti1.,4al in a ve:-iy natu:,:aJ. and -r ,n.c l:Žl eei an,.d i., i, cJ.e,..c



3-7..

from tih *.- ... i.on that it involvefs a minimum of encodincg

and decodin-, ccmputUtions. Unfortunately, it possesses one very

sermous dxawback. If n is suffic.ently .lage the paroba.bility

is vcry close to one that ako least one of the signals will require

for fits transmission en amount of powevfr (i.e., the squar-e of the

si.inal) whi.ch exceeds any fixed bound (and hence the "capacity"

of the Instruo-nat).

Soim.ie re:kferenc-es for xh- s scc.,o.:

18-1 [, £.L5i., [171 [3-) , [33] , •431, [1 41, [46],
[5-, [5.31, [543, [5 8) [6q) [77], [79, [871
-881 , [931 [96) .97,I , [1211 [12 , [fL27J , [135]., [13(U 19?] [r Jo [.,.,0)oL [,017] , [150] ,.[0]" -"L'.•5 )" * , .- 5 , .5, ,

16..-3: D 18'1,i [A,61 , [1607] , [1 -9o0[*.1-
-1,.9-•7 [3C.9.)o. , F200o], [201,. , [20o21 , [2o.3]
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kshaniion L1.1l[.j rind oth w':.te'i have' stucUiecl thco :f-A.1oling

prob?.e~a: An (ise~t~)rcquw'nxce of Informationi cdigltp i.e. E

valuor takon by a segmecnce )f cl1mance vara'tbJ.ecs wilth~ a knovn

distri~butiocn (16*ho elllace Arit~~ e usv.ally* indiependently

*and ideft ticaJiy' diatr-lbu~ted., but th.*ts Is riolt essenti-al.) are

pr~oduced by a sourc.-: Aftetv- thim- stomr .s produced n d1CiJts

the latter are Codehd into a secjuenc-C 0"' ri'1 diglts; this SeCC-7wnce

irt3 t:'.ansy-ii-..1tcd ovec-i a rio-1Ey cýIý.niv)J., andl the rece--.vlr.ci n' - sequnnce

is OecCoded into a sqon*cn :wflo:mitntiou , (The actuel

T~hcre is a" .f'idelitv y ~~o'Wi~Lezu'~ h~Iiso~..n

*bett-jfl I'he~S2MC o'V n d~~ sthus, 6'*.cdae e-.dl -'ne sqe

of n ~ :ts P:i,-OcuC:--.! by tkAG VOu:1 c,0 Thc xe v~t bt- .ied-1 in

neade~d so t.'*a*.zt thrc, all~tor~tJion not cce~a vi~veri bound, -:An the

*geo-w-tric prxob1i!%.;i of? ti,,.:! r ~' nLr-ltb,,r o" v)-secrouances olf in--

* ~fori~iati7ori. nit;rc~eded to 'r;pan' tho spva c :?s-.c sequxencas ofC

info-.~.m~tion ditvto aihnis cfLz boun.rd on the 6.istc.:rtic)-fl,

th~ ~ J~i~t:TOfl ft oVa Y-1061'j.w- S*t6% ur'. a T beena

Ta4j:.i ~cO.L 'tzr :? ).uLand~~oJ of ~ x-~t tie1m- eo.';I.C-kn

arc h J :e:J3 ~iij.~n1~r' i.xevTto teil.a'



t.~~~~~:t~~ ...,~-)~~~(~t ,t be, e. sequ-ncmc of chiance

vLidcthe pai..xr t ~t bel.n3 def.tned on the pvrobb~1il.ty

]-,,t

.X.

t t t
f' t i tbt~to'n

ci-,t-,.t-,t.v.-C by P ,isnc1 .0 *L .. l. .ofi.th re ~ t to

t tl

so h-t f i

tt

"f '.12

x~~ 0" . - .. ,

..... .... .... .......

collr~rýGflF.,- oc,-4 ic, 1'", o Or'C'



ca13.ced the cl.,Iltrlbu~tlton of t!c, Ihpu;t mi'essge Any paitr( I

of chsance varl.tb).es t,':hose joi o~nI; r~~btnbelongs to W Ic

said to satiefoly the conci:.tonts of' repr'oduction 1-1 W1ithouit loss

*of much genox'aiity one lI~aits one's s elf to If def:tnecd aý- folloi.ow:

Su~ppos3e gIv.-n real :Cunczion.,ý yj(x.0x)., i. Idbe s def inedJn

on ^% M anctivra)' w~.th repec-t to th a1Xbr

and~ an ze.c~nr~:ou~J tt T-. 1- cons:Ust' of allJ3 d1xt~ributI~onf;

p (w;ith thCVI dem.rw.Jc.-Stritbution ot.Cý )for l:4ib.-ic th..,

vector l -hre mtocl

beor nto'.. T 1 entxro-py twjt~ ti c~curacy o:CL rep:rod t.x t:'on.

* Wl' is dc:-i.vvic t,3 br

The, sauenc VY iizii~~{W}:s called .nf o-ei-at ion, s~table if

there ex-ists a~n itnf'o... Yat..on stable seqcu-nnce o:? pairs ~k

Such that tk-ho t~ Pair~ ati:?aj~s t~l'e condition of reproducltoon

VI nd,

r~ t .J4



,..,ro!'-~~.tirn-Ei stb.-ltty of~ a rUTc Of metcar.-n ir, bound up

izl.th thc-t p:%-ob3.r_.t of obt%,n*1.kif±:t:.ri). g'nenral. conclitkons

for' the in:fo~t-iiatlon t%'-:bJiJ.:ty oP a sequsnc~e of paiLrs- of chance

Let (,S) &nd (I, S_) be two st: paces whc~serve

as vie space of innut slr.neK~s end spacc or' outpuit s-143fls3J,

M1,1yp51eti~v&.y. Let; Q (Y, A), yca Y~ c S, be a tran. s 11*ior

!'oritlon stmch th-at a) for U'xed y, C (,,I. In a probability

ma-sure on~ S,' b) fox' fixed Sl( .A is mea~surable

with -,acl 'to 1te CI ~~e), S~, Lret V bo & given sat of

pr~obcstbi. It,1 IS-'.to'noi(' ' The r;?sterin

collofti r;o o:V Yý, Y., 0, and V Is c c. .3. cI: "the t .-. nsm5i+tt~r" and

';L.b.,- d o _~form,~ t by {y.% V) The c.h'ance v~arnb).6-s

L),, r, wihvl~ n' a ~rkd V ctvoy are 91cormcct by

tile, tran" .tt' {( .~ t1*,--e±L J01.nt d :iLt ion beJlonrZa to

V an)Ct for0A S.-- the cond1Vtticbnj.x). pbb~-t'litt

wi~tl. probvb:itv one. Agca n O~t oscf WAICe 1'03neia1.ity,

one :u.ilt*ts ont'0s sJ t o r, et s V d-w'ý-Ind asfollo~..

S~xoposo L:iven. :-e~an. furinctiont d:( ,') ef'in cc on

Y> ; Yj anet ami1.dT~i'so . c V. Th; F t C-. V c)f itbu.r

ao4r f~ oVa.13. o tr:l bh vnA: ( mr C. 1 -0 r t:..th



vector wheot Lth co:;'poncnt, :1 r'iz 0.,. N$ 1

.is in V. When the ' depend only on y the constraint imposed

by V is on the inpuu" siGnal oniy. 'the capacity of the trans-

mittor .[Q1Vj is. def~ined to be

0 (CIV) sup I
V

The secju.nco of' transmitteirs { ~ t v is said to be infCormiation

stable if the:(c e:5.sts an info:rmation stab!le sequence of pairs
t ~t thof civanct vai.blcs (• , ) suCh that the t pair .2s connected

by the t txrani•iiittar and such that

C(Qt, yt)

All publIched results concern themselves only vrith information

stable sequencse of transmitters.

The r•c.sa.,e {W. is said to be t.ansme'sibleby nisans of the

trnn~ux-ttvr IQ if Uhoe~z exists a sequence of four chance

variables such th(.at: a) this sequence is

a Ik:ckov cbe.n b) the p a ( .• i sats:,Iles the conditions of

reprodc2toGn u c) the pair (r, is connected by the trans.-

mAitten f -,V} The rn'tu: tive meanIhg of t , abovz, is as fol.lows:



d~stribixi~ton ,z The input tiiossaga. i s code~d into the in~put

ct~ra ~,wi~.i etoe4 the .tralnel-li.tter (channel) andl

receved ca. Thn q ir decodtee into the outp* 'masg

The trancs'itte..t' is C;-ven intid 1- represents the elesir-ed accuracy

of' repr.oductiton.. Tha condltionc~J. probabllity,; of' A. Cgiven 0

fts themiido;;-ýiledl encodl~i,,, prc~ceduy'c Th~c ondto distrilbution

of( :7.. 0. '~ (~. 0 (~ ) !stkm. dist'ribu~tlon of' theý

rcicelvod sl.jnal.. Tho concl~iUorilx p:robnbillty of'~ given et,,

.1.s the %rar,,lcmlznd dacodln" prxocedu:m.

It is eas-y to pxove th~al P ne(,e .,sLay cohdit ion that the

mesage{W~ b t.. ~s1ctr~i:le by n~asof the trazirmytitter Q\'
iSth'at

11 (w) C (%~V).

A p~ri~nacpvl concern of tb( writters of' t~hert ussfaan school is to

prove t~hat., asymptot~.caliy~ and iinde-r additio~nal reasonable

:e**ularty:' cond.5tVoonsti conditic,ýon is, also cu.1i':tcient. W-e

nolr,!' dce crl-bc a ty~cland lumpoirtant rceauJlt. Let V

be a, et eq'Anc a. n. Q. ý V~ Ia given sequ~en'ce

points of' li;.-,* same Eucllz ! pac~e az~ the ucit absolu~te

clevctin bst~enicorp s~di~ c: *)n~~i~ oa a ned b. If7 Tj

P.I.



A

points vri.'th:in an r-dic, tance of.'at most fro.m some point of' U.

We novw replace 1•1 by [L7], , and call the cor'responding message

{ W•. We also replace V by [V. and call the corresponding

transmitt~er QV We say that the mesrsa~e 114) is transmitssiblýe

by means of the tranismitter IQJ w.ithin an -event of probability

if there exist four chance variables , •, 3 , and a fifth'

chance varitabl.e d', defined on the same space as E., such that

a) ( , Lform a Markoov ci'an b) ( .,') risty

the conditions of repvoduction I? c)the pair (,, is

connected by the transmitte.r tQPV d)the probability that .t
is not greater than N Uow let W be a aiven sequence of

messages and a given sequence of t'ansmitters, such that
a)li 1.. I I (w,,t),.. ',. b)li C:,• - (Q.'",h. V_. )

tt
( W b) U m C ( 0t , v t )

c) the nunber Mt oV funct,.ions . in the definition of the
" 51 tmessag'.e and the fnwAber N' of functions 4. in-the defi:1nition of

the transmitter ame such that, Vor every a> O,

14t o (exKp Ia t-(LI

2
and

Nt o ( exp a C(Qt, Vt)j

d) the sequonce of transmitters { Qt, Vt is I.nfor'mation stable

e) for ;.•on. { (t,,, •) • a sequence of pairs with respect to

which the sequcnce is info:,itation stable, for some

16 >0 and fo:e every a >0!,



T: 1' 1t! t ..(

0 o(~xp hC C' (t Vt) )2 L t~
7)tosequcnco :ls in:fo:emation ztabie,, and g) for some

t .dsecjue'rice (;, of infoxurivti~on stabl~e'sequences of chance

V61rabJlcm, with rospeoltG to whicla fit I in,'-or~aatIe~n stable

andwl~ch Asosaisfy th3 condi.tions of reprodu~ctionIWt

for ~Cib >0 and every a '-0,

nit bd
AIS.£

~E t1

h=-.1p {ytW )

Than, fo:%, civc.xy ~>o tE'~evrý exis.ts a nvur.bar T such that for t7,,T

the .111!t ~ by t!^ . , V .ý

nrl evoll. orp-robaili).ty U 'tnder ti!ddJ~tfloncai conditions

one can e1l:trnate the. tph~rilsc in quotat*.ton niarkts One suich set

of condit'ionr.i Is th.-it caca of thu Sequences, {i 4tJ Ntj and

k ~: k

.~oJ. l '.- bo n(( k j
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